

ENAMELLED PLAT WOUND RESISTORS MODEL SMO

TECHNICAL DESIGN

TYPE	POWER	RESISTANCE - Ω -		DIMENSIONS (Ref.Drawing)	
	W	Min	Max	D (mm)	H (mm)
SMO 14x76	50	R047	3R9	24	76
SMO 16x90	75	R047	5R6	26	90
SMO 20x100	100	R047	8R2	30	100
SMO 30x108	155	R068	10R	40	108
SMO 30x165	240	R12	22R	40	165
SMO 30x220	300	R18	27R	40	215
SMO 30x265	370	R22	39R	40	265

THE OHMIC VALUE SHOWN (MIN - MAX) ARE INTENDED AS TOTAL RESISTANCE OF WINDING

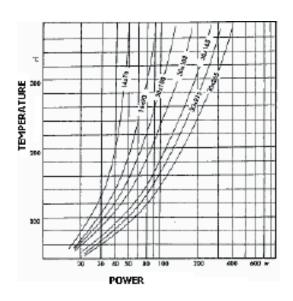
GENERAL FEATURES

Professional resistors with extremely high overload characteristics, which are mechanically very robust and non-inflammable, with excellent insulation. The joints obtained with electric welding and the large size of the terminals were designed to support strong, brief overloads and are particularly suitable for use where a low resistive value and high dissipation capacity are required.

The external protection is secured by a vitreous enamel lining.

The resistive element consists of a plate in Ni-Cr alloy or twisted constantan, on an extremely high quality cylindrical ceramic support.

ELECTRICAL CHARACTERISTICS


- Standard tolerance: ± 10%
- · Temperature coefficient ≤ 100 ppm/°C
- · Insulation resistance > 100 Mohm (500 Vdc)
- Max operating temperature: 400 °C

MAXIMUN LOAD LIMIT

The nominal power Pn shown in the table refers to resistors placed horizontally and free in naturally circulating air, with an environmental temperature of 25° C.

With forced ventilation the nominal power dissipation capacity of the resistor increases as a function of the air speed.

DIAGRAM POWER VS TEMPERATURE

