GEMENTED PLATE WOUND RESISTORS MODEL PMO

TECHNICAL DESIGN

GENERAL FEATURES

Professional resistors with extremely high overload characteristics, which are mechanically very robust and non-inflammable, with excellent insulation. The joints obtained with electric welding and the large size of the terminals were designed to support strong, brief overloads of short duration and are particularly suitable for use where a low resistive value and high dissipation capacity are required.
The external protection of the resistor consists of a ceramic cement lining.
The resistive element consists of a plate in $\mathrm{Ni}-\mathrm{Cr}$ alloy or twisted constantan, on an extremely high quality cylindrical ceramic support.

ELECTRICAL CHARACTERISTICS

Ohm values available see standard limits indicated in the table
Standard tolerance: $\pm 15 \%$ for values > 1 ohm
$\pm 20 \%$ for values < 1 ohm
Temperature coefficient $\leq 100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$
Insulation resistance > 100 MOhm (500 Vdc)
Max operating temperature: $400^{\circ} \mathrm{C}$

MAXIMUN LOAD LIMIT

The nominal power Pn shown in the table refers to resistors placed horizontally and free in naturally circulating air, with an environmental temperature of $25^{\circ} \mathrm{C}$.
With forced ventilation the nominal power dissipation capacity of the resistor increases as a function of the air speed.

TYPE	POWER	RESISTANCE $-\Omega$		DIMENSIONS mm	
	W	Min	Max	D	H
PMO 14×76	50	R05	3R	24	76
PMO 16×90	75	R05	4R5	26	90
PMO 20×100	100	R05	8R	30	100
PMO 30×108	155	R1	9R5	40	108
PMO 30×165	240	R15	$15 R$	40	165
PMO 30×220	300	R2	20R	40	215
PMO 30×265	370	R3	30R	40	265
PMO 60×300	750	R6	60R	76	300
PMO 60×400	1000	1R	70R	76	400
PMO 60×500	1500	1R5	90R	76	500

THE OHMIC VALUE SHOWN (MIN - MAX) ARE INTENDED AS TOTAL RESISTANCE OF WINDING

DIAGRAM POWER VS TEMPERATURE

POWER

