

RESISTORI A FILO CEMENTATI MODELLO BR

DISEGNO TECNICO

CARATTERISTICHE GENERALI

Massima variazione relativa di valore ohmico in seguito a dissipazione elettrica:

Tolleranza	del valore	ohmico r	ominale	F(± 1%), G(± 2%)	J (± 5%), K (± 10%)	
1000 h		P _N		(40°C)	± (2% + r)	± (5% + r)
1000 h		0,7 P _N		(40°C)	± (1% + r)	
1000 h		0,2 P _N		(40°C)	± (0,2% + r)	
r=0,0002	Ohm per		=< R _N <	1 Ohm	La comunicazione d	
r=0,02	Ohm per	1 Ohm	=< R _N <	10 Ohm	tecnici è possibile su	ı richiesta.
r=0,05	Ohm per	10 Ohm	=< R _N =<	25 Ohm		
r=0,002 R _N	Ohm per		=< R _N >	25 Ohm		

La comunicazione di ulteriori parametri tecnici è possibile su richiesta.

CONDIZIONI DI TEST

Sovraccarico elettrico di breve durata: sovraccarico elettrico ciclico del resistore - 80 cicli con t = 50 s e 6,25 PN (0,1 t = 0) on; 0,9 t = 0)

Solidità: carica del resistore per 1000 h con PN; 0,7 PN o 0,2 PN

Verifica climatica a lungo termine: carica del resistore a 40°C e 93% di umidità atmosferica per 56 giorni con PN;

Test sul cambio di temperatura: carica ciclica per 5 periodi del resistore a filo

Temperatura superiore: 155°C 30 min. **Temperatura inferiore:** -55°C 30 min.

CARATTERISTICHE GENERALI

Tenuta meccanica dei terminali:

forza di trazione:

4 x 12 - 5 N9 x 20 - 20 N

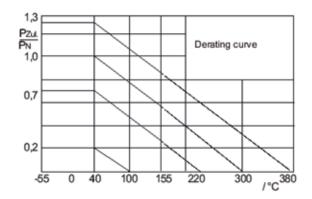
6 x 16 - 10 N9 x 32 - 20 N

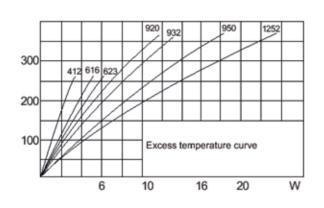
6 x 23 - 10 N9 x 50 - 20 N

6 x 23 - 10 N12 x 52 - 20 N

Resistenza alla piegatura: 2 piegature a 90°

Resistenza alla torsione: 2 torsioni di 180°


· Su richiesta i terminali possono essere piegati.


Documentazione di riferimento: IEC 115, CECC 40000 / 40200 o DIN 45920 / 45921

• I resistori BR possono essere caricati con impulsi singoli di tensione molto alta (impulso standard 1,2/50 secondo IEC 115).

• I resistori della serie BR possono essere realizzati su richiesta come resistenze fusibili.

Modello		BR 4 x 12	BR 6 x 16	BR 6 x 23	BR 9 x 20	BR 9 x 32	BR 9 x 50	BR 12 x 52	
Range di resistenza	R15 - 5K6	R03 - 10K	R047 - 18K	R10 - 33K	R20 - 51K	R24 - 82K	R33 - 110K		
Tolleranza della resistenza	K (± 10%); J (± 5%); G (±2%); F (±1%)								
Dissipazione di potenza a Ta=40°C	3 W	4 W	5,5 W	7 W	10 W	15 W	18 W		
Dissipazione di potenza a Ta=70°C	2,5 W	3,5 W	5 W	6 W	9 W	13,5 W	16 W		
Tensione limite nominale		$U = RADQ (P_N \times R)$							
Limite di temperatura superficiale ami	270 °C	270 °C	270 °C	270 °C	350 °C	350 °C	370 °C		
Coefficiente di temperatura		+100 x 10 ⁻⁶ /K							
Dimensione modulare minima	20 mm	22,5 mm	27,5 mm	27,5 mm	37,5 mm	57,5 mm	57,5 mm		
Potenza dell'impulso periodica f≥30Hz Ta= 70°C		5 W	7 W	10 W	12 W	18 W	27 W	32 W	
Potenza d'impulso all'accensione Ta= 70°C		31 W	44 W	62,5 W	75 W	112 W	170 W	200 W	
Tensione d'impulso periodica f ≥30Hz Ta= 70°C		140 V	200 V	285 V	440 V	700 V	985 V	1225 V	
Tensione d'impulso all'accensione	280 V	400 V	570 V	640 V	1000 V	1720 V	1740 V		
Dimensioni in mm	D max =	4,8	6,0	6,0	10,0	10,0	10,0	12,0	
	L =	11,6	16,0	22,5	21,6	32,0	50,0	52,0	
	d =	0,8	0,8	0,8	0,8	0,8	0,8	1,0	

